1.	(a)	Tissue fluid is formed from blood plasma. Complete the table to show substances present
		in tissue fluid and blood plasma. Use a tick if the substance is present and a cross if it is
		absent.

	Substance		
	Glucose	Sodium ions	Haemoglobin
Tissue fluid			
Blood plasma			

(b) The hydrostatic pressure of the blood at the arteriole end of the capillary helps to form tissue fluid. Explain how.

(Total 4 marks)

(2)

2.	(a)	Describe and explain how water moves via the apoplastic and symplastic pathways from the soil to the xylem in a root.

(6)

(b) The graphs show the daily changes in environmental temperature and light intensity, and changes in the diameter of the trunk of a pine tree.

Use information from the graphs, and your knowledge of the cohesion-tension theory of water movement through a plant, to explain why the diameter of the trunk is smallest at midday.

	•••••			
	•••••			
	•••••			
	•••••			
			(Tota	al 15 marl
Γhe	diagra	m shows how tissue fluid is formed at the arter	iole end of a capillary.	
	Tis	sue fluid hydrostatic pressure = +0.45kPa	y.	
	Tis	sue fluid water potential $= -0.35$ kPa		
			Tissue fluid	
	•		Tissue fluid	
	• •		Tissue fluid	
	•		Tissue fluid	
Blo Blo	ood hyd	drostatic pressure = +5.2 kPa	Tissue fluid	
Blo Blo	ood wat	Arostatic pressure = $+5.2 \text{ kPa}$ ter potential = -3.15kPa		
Blo Blo	ood wat Arte	drostatic pressure = +5.2 kPa	Venule end of capillary	
Blo Blo	ood wat Arte	Arostatic pressure = $+5.2 \text{ kPa}$ ter potential = -3.15kPa	Venule end of	
Blo	Arte capi	drostatic pressure = +5.2 kPa ter potential = -3.15kPa eriole end of Illary	Venule end of capillary	າ໘.
Blo	Arte capi	Arostatic pressure = $+5.2 \text{ kPa}$ ter potential = -3.15kPa	Venule end of capillary n of tissue fluid. Show your working	ng.
Blo Blo	Arte capi	drostatic pressure = +5.2 kPa ter potential = -3.15kPa eriole end of Illary	Venule end of capillary	ng.
Blo	Arte capi	drostatic pressure = +5.2 kPa ter potential = -3.15kPa eriole end of Illary	Venule end of capillary n of tissue fluid. Show your working	
Blo	Arte capi	drostatic pressure = +5.2 kPa ter potential = -3.15kPa eriole end of Illary	Venule end of capillary n of tissue fluid. Show your working Answer =	
Blo	Arte capi	drostatic pressure = +5.2 kPa ter potential = -3.15kPa eriole end of illary How is the high blood hydrostatic pressure a	Venule end of capillary n of tissue fluid. Show your working Answer =	

3.

	capillary to the other.	d hydrostatic pressure to decrea	se from one end of the
	tissue fluid is passed out of the s tissue fluid is returned to the	e capillaries than is reabsorbed. blood.	Explain how this
			(Total 7 mar
			,
The table sh	ows the relative rate of diffusion	on of oxygen through three diff	Gerent media.
	Medium	Relative rate of	
		diffusion	
	Air	diffusion 11.0	
	Air Water		
		11.0	
	Water Muscle tissue	11.0 3.4×10^{-5} 1.4×10^{-5} all made at the same temperature	are. Explain how an
	Water Muscle tissue neasurements in the table were	11.0 3.4×10^{-5} 1.4×10^{-5} all made at the same temperature	
	Water Muscle tissue neasurements in the table were	11.0 3.4×10^{-5} 1.4×10^{-5} all made at the same temperaturate of diffusion.	
	Water Muscle tissue neasurements in the table were	11.0 3.4×10^{-5} 1.4×10^{-5} all made at the same temperaturate of diffusion.	

4.

(b) The lung alveoli have a moist surface

(i)	It is sometimes suggested that this moist surface makes gas exchange more efficient. Use the information in the table to explain why this suggestion is incorrect.	
		(1)
(ii)	Explain how diffusion results in the alveoli having a moist surface.	
		(2)

(c) The diagram shows the position of the tracheoles which supply oxygen to the muscles of an insect.

This insect has more than 1.5 million tracheoles. The distance between the ends of tracheoles in the muscle is approximately 4 pm. Explain how these features allow efficient oxygen supply.	the
	(3)
T)	Total 8 marks)